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Abstract
The physical and electronic properties of atomic chains formed on various surfaces have
become one of the most popular fields of study in surface science. Due to the inherent
one-dimensional nature of these chains, various exotic physical phenomena specific to
one-dimensional systems have been observed. Among them are Peierls instability and Luttinger
liquid behavior. This topical review briefly introduces the physics of these one-dimensional
atomic chains and gives some examples from the recently published literature.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Technological development in the fabrication of integrated
circuits suggests that in the near future the typical size of
the individual components of these circuits will be scaled
down from tens of nanometers to only a few nanometers.
As it becomes possible to engineer such components, the
next step will be the connection of these pieces in order
to incorporate them into the circuit. Ideally speaking, this
connection could be scaled down to wires of only one atom

in diameter. Therefore, the fabrication of these connections
and their physical properties are as important as the individual
components. Today it is possible to create well defined
low-dimensional structures on the nanometer scale by using
various techniques [1]. Besides the technological necessities
of producing these atomic chains, they are valuable substrates
for the study of rather interesting properties of one-dimensional
physics such as Peierls instability [2] and Luttinger liquids [3].

Advances in scanning probe techniques allow the
addressing and manipulation of individual atoms. Artificial
structures can be built by using these individual atoms.
Particularly beautiful and pioneering examples are two-
dimensional atomic structures showing the scattering and the
confinement of electrons [4, 5] Using the same approach,
Nilius et al have assembled chains of Au atoms on a NiAl(110)
surface [6]. Similarly, Fölsch et al have manipulated individual
Cu atoms to form atomic chains on the Cu(111) surface [7].
However, this approach has two inherent disadvantages for
technological applications. The first one is the difficulty of
fabricating a number of these atomic chains in a reasonable
time and the second one is the limited temperature range at
which these atomic chains remain stable.

Self-assembly is considered to be an alternative technique
to the conventional lithographic techniques which slowly
approach their limit of about 15 nm [8]. The biggest advantage
of this method is the ease of production of the well defined,
high quality structures even with rather complicated organic
molecules [9, 10]. Another important advantage of self-
assembly is the ability to produce structures that are stable
in a rather wide temperature range. The majority of studies
on self-assembled atomic chains have been performed on
semiconductor surfaces, such as Pt and Au atomic chains
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on Ge(001) [11, 12], Au, Pb atomic chains on vicinal Si
surfaces [13, 14] and atomic chains of Bi and rare-earth metals
on Si(001) [15, 16]. This can be attributed to the technological
importance of semiconductor surfaces. In addition to this,
the existence of a band gap on these surfaces electronically
decouples the substrate from the atomic chains and allows one
to study the physics of truly one-dimensional structures.

In this topical review, the focus will be the recent ex-
perimental and theoretical studies of various one-dimensional
atomic chains. Before mentioning these studies, the physics of
one-dimensional structures is briefly introduced in section 2.
However, interested readers are strongly encouraged to dive in
to the references given in the following sections.

2. One-dimensional electron systems

2.1. Non-interacting one-dimensional electrons

The simplest model of a non-interacting electron system is
an electron gas. In this model, the interactions of electrons
with other electrons and with the periodic corrugations of
atoms forming the crystal are neglected. This model is very
simple, but it is still able to explain many properties of
metals such as heat capacity, thermal conductivity, electrical
conductivity, magnetic susceptibility and the electrodynamics
of metals. However, in nature we do not have only metals;
we have semiconductors, semi-metals and insulators. All these
materials have distinctively different physical properties from
metals. Therefore, it is necessary to elaborate the electron gas
model in order to explain these differences. The first step is
to consider the effect of the periodic corrugations of ions in
the properties of the crystal. Superimposing these periodic
corrugations into the electron gas model leads to formation of
energy bands and allows us to explain features like the positive
Hall coefficient and transport properties.

In the electron gas model, electrons are considered to
be confined in a quantum box. Since this is a model for
real materials, the transport properties of electrons should
be addressed properly. In order to allow electron transport
across the crystal, wavefunctions of electrons should satisfy
periodic boundary conditions. The eigenfunctions (�n(x)) and
eigenvalues (En) of the Schrödinger equation for such a one-
dimensional system are given in equation (1) [17]:

�n(r) = eikx

En = h̄2

2m

(nπ

L

)2
n = 1 . . .∞

(1)

where h̄ is the Planck constant, m and L are the mass of the
electron and the width of the quantum well and n is a positive
integer indicating the quantum number of the energy level.

The next step is to place a given number N of electrons
into the energy levels properly. According to the Pauli
exclusion principle, no two electrons are allowed to have
identical quantum numbers. In the one-dimensional case,
including spin, we have two quantum numbers, which enables
us to place only two electrons (with opposite spins) in each

energy level. Thus, N electrons can occupy N/2 states. The
energy of the topmost filled level is formulated as

EF = h̄2

2m

(
πN

2L

)2

. (2)

This energy is called the Fermi energy. The definition of the
Fermi energy as being the energy of the topmost filled level
will keep its validity for the rest of the discussions.

Another important quantity is the density of states, which
is defined as the number of possible orbitals per unit energy
range. For a one-dimensional electron gas it can be derived as

D(E) = dN

dE
∝ E−1/2. (3)

As shown in equation (3), the density of states of a one-
dimensional electron gas is proportional to E−1/2. These kinds
of singularities in the density of states are called van Hove
singularities, and as will be illustrated in the following section
the van Hove singularity is an important indication of the
existence of a one-dimensional structure [18].

It is time to include the periodic corrugations of the ions
in a crystal. For the sake of simplicity, it is better to consider
the problem in one dimension. The Fourier transform of the
periodic potential of the ions is

V (x) =
∑

G

VG · eiGx (4)

where G is the reciprocal lattice vector and VG are the Fourier
components of the periodic potential. All the quantum states
are represented by the state vectors in the Hilbert space, and
all the observables are represented by Hermitian operators.
The set of all eigenvectors of any Hermitian operator forms
a complete basis set of the Hilbert space. In other words,
it is possible to write any eigenfunctions of any Hermitian
operator in terms of the eigenfunctions of another Hermitian
operator [19]. By using this very fact, the eigenfunction of the
new Hamiltonian can be written in terms of the eigenfunctions
of the free electron gas:

ψ(x) =
∑

k

Ck · eikx . (5)

So the total Hamiltonian becomes

−h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

∑
k

h̄2

2m
k2Ckeikx +

∑
G

∑
k

VGCkei(k+G)x

=
∑

k

E(k) · Ckeikx .

(6)

This equation remains valid only if all the coefficients of each
Fourier component are the same. Namely,

h̄2k2

2m
Ck +

∑
G

VGCk−G = E(k) · Ck or

(
h̄2k2

2m
− E(k)

)
· Ck +

∑
G

VGCk−G = 0.

(7)
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In the final equation, a differential equation is transformed
into a set of linear equations. In order to find the exact solution
of this equation, it is necessary to consider an infinite number
of linear equations. Taking into account only the first few of
these linear equations is a good approximation if the Fourier
expansion of the periodic potential converges rapidly. For any
given k value, the solutions of these equations, E(k), forms the
set of energy values, in other words the possible band energies.

Now, consider a crystal containing N primitive cells, each
with length a, which means the size of the crystal is L = Na.
Since we have a finite size crystal, unlike equation (1), the
possible k values are the integers bounded between ±N :

k = 0; ±2π

L
; ±4π

L
; . . . ; Nπ

L
. (8)

Since Nπ
L = π

a , the number of independent k points in the
Brillouin zone is determined by the number of primitive cells
in the crystal. For N primitive cells, there are N linear
equations as shown in equations (6) which can be solved to
find all possible energy values. So the total number of energies
becomes N . Including spin we have 2N possible orbitals
in which to place electrons. Depending on the number of
atoms and electrons in a primitive cell, the bands can be filled
partially or completely. The crystals with completely filled
bands are called insulators, whereas the crystals with partially
filled bands are called metals [20].

2.2. One-dimensional interacting electron systems

Up to now, we have neglected the interaction between
electrons; now it is time to include them in the model. The
derivations and equations given in this section and in the
following section are mainly a brief and simplified summary.
Interested readers are referred to the relevant books and
reviews referenced in this section.

The first obvious method is to consider the inhomoge-
neous part of the electron–electron interactions as a perturba-
tion to the non-interacting electrons in the jellium model [21].
The homogeneous part is q = 0, and from now on in all sum-
mations q = 0 is not included.

In this model, the ion–ion, the electron–ion and the
electron–electron interactions are considered to cancel each
other, and the periodic corrugations of the ions are replaced by
a constant positive charge density. The only remaining term in
the Hamiltonian, as in the free electron gas model, is the kinetic
energy term. The result of the first-order perturbation theory
shows that the three-dimensional free electron gas is stable in
the presence of the Coulomb interaction:

E

N
= E0 + E1

N
=

(
3h̄2k2

F

10m
− e2V k4

F

4Nπ3

)
. (9)

However, the second-order perturbation diverges, indicat-
ing that it is not possible to improve accuracy of the calcula-
tions by considering higher-order terms in the perturbation.

This may appear to be a difficult problem. However, there
is a way to overcome this difficulty. Consider an electron
traveling in a crystal: due to the mutual interactions between
this electron and its surroundings, the electron constantly

creates a disturbance around itself. This disturbance moves
together with the electron. The disturbance together with the
particle itself is called a quasi-particle [22]. The model based
on this quasi-particle picture is known as the Fermi liquid
theory. The validity of the quasi-particle picture relies on
adiabatic continuity, i.e. the excitations of the non-interacting
system and interacting system should be correlated in such
a way that when the excitations are slowly turned on, the
occupation number of the states of the non-interacting system
should remain unchanged.

The Hartree–Fock model is the simplest model for
interacting electrons. In this model, only the forward and the
exchange scatterings are considered. In forward scattering,
there is no change in the momentum of the particles upon
scattering. However, in exchange scattering, each time the
particles are scattered, instantaneously, an electron–hole pair
is created and annihilated. Using Coulomb interactions it is
possible to calculate the energy of the quasi-particle:

E ′
k = k2

2m
− e2kF

2π

[
2 + (k2

F − k2)

kkF
ln

∣∣∣∣
k + kF

k − kF

∣∣∣∣
]
. (10)

Since effective mass is defined as

m = kF

/(
dE ′

F

dk

)

kF

, (11)

using equations (10) and (11) it can be shown that the effective
mass, m, around the Fermi level becomes zero. A replacement
of the Coulomb potential with the screened Coulomb potential
(also known as the Yukawa potential) would be enough to
get rid of this awkward result. This replacement also helps
to tackle the divergent integrals that emerge in the further
calculations. However, even replacing the Yukawa potential
does not remove the conceptual deficiency originating from the
Hartree–Fock model. The problem can be shown easily on the
Feynman diagrams shown in figure 1 (see [22] for details).

As indicated in figure 1, at any time t (dashed line)
we have only a bare particle. However, we know that the
quasi-particle is nothing but a bare particle surrounded by an
interaction cloud and the importance of the interaction cloud
increases when the density of the particle becomes larger.
The absence of the time-dependent interaction cloud makes
the Hartree–Fock model insufficient to describe the densely
populated electron sea.

The solution to this problem comes when we include
some of the perturbation terms omitted in the Hartree–Fock
model. This new approximation is called the ‘random phase
approximation’ or simply RPA Feynman diagrams of the RPA
approximation are shown in figure 2 (see [22] for details).

The difference comes from the diagrams showing the
‘effective interactions’. The term ‘effective interactions’ refers
to the existence of indirect interactions between two electrons
via the many-body system. Another key point in these
diagrams is the existence of holes and electrons at the same
time for certain time intervals. Actually, in this way the
medium becomes ‘polarized’ [23].

The susceptibility χ(q, w) measures the response of the
electron gas to an external potential and it is defined as

χ(q, ω) = 1

Ld

∑
k

fF(Ek)− fF(Ek+q)

ω + E(k)− E(k + q)+ iδ
. (12)
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Figure 1. Feynman diagram of the Hartree–Fock model. In the figure bubble diagrams represent forward scattering and open oyster diagrams
represent exchange scattering, and both of these scattering events are instantaneous.

Figure 2. Feynman diagrams of RPA approximation. The diagram in the third term is called a ring diagram, showing the creation of a
particle–hole pair and at a later time the annihilation of this particle–hole pair. At any given time the particle is accompanied by particle–hole
pairs.

The energy, E(k) is measured relative to the Fermi level,
therefore when k is on the Fermi level, E(k) = 0. This might
lead to singularities when ω = 0, (static susceptibility). A
singularity is possible if E(k+q) is zero for q �= 0. In two- and
three-dimensional systems there are only very limited numbers
of these kinds of q vectors. Since there is a summation over all
k points, these singularities are smoothed out. The singularities
remain only in the derivative of χ(q, ω = 0). The singularities
in the derivative of χ(q, ω = 0) are the origin of Friedel
oscillations [24, 25]. The singularity in χ(q, ω = 0) exists
only if there is a finite size domain of k values satisfying the
condition given below:

E(k + q) = E(k).

This is called nesting. In a one-dimensional system, there is
always a vector, q = 2kF, creating the singularity independent
from the dispersion relation (see figure 4). The existence
of a singularity means that there is no adiabatic continuity.
Thus the very basic assumption of Fermi liquid theory stating
that starting from the non-interacting system of particles it is
possible to reach the interacting case by applying perturbation
theory fails in one dimension. Thus, a new model explaining
the properties of the interacting one-dimensional electron gas
is necessary.

The dispersion relation of excitations in a three-
dimensional system and a one-dimensional system is quite
different. In a three-dimensional system, the electron–hole
and plasmon excitations are clearly separated. Therefore,
plasmon excitations are stable and cannot decay through
emitting electron–hole pairs. On the other hand, the low
energy excitations in a one-dimensional system are plasmons
and they are possible in a narrow band for q values very close to
zero (forward scattering) and 2kF (backward scattering). This
very fact will be used when forming the Luttinger–Tomonaga
model. We consider the impossibility of individual movement
of any electron in a one-dimensional interacting system.

2.3. The Luttinger–Tomonaga model

The failure of Fermi liquid theory to explain one-dimensional
interacting electrons led to the development of a new model,
called the Luttinger–Tomonaga model [3, 26, 27]. In this
model, the excitations of the one-dimensional system are
defined as particles moving to the right and left. The validity
of this assumption relies on the fact that the excitation energies
are small compared to the Fermi energy. The Hamiltonian of
the interacting electrons can be defined as [28]

H = H0 + Hint

H0 =
∑

k

εkc†
k ck

Hint = 1

2L

∑
kk′q

V (q)c†
k c†

k′ ck′−qck+q

(13)

where ck and c†
k are the annihilation and creation operators for

Fermions with a wavevector k, εk is the eigenvalue of the non-
interacting Hamiltonian and V (q) is the Fourier transform of
the repulsive interaction between electrons.

The crucial approximation in the Luttinger–Tomonaga
model is to assume a linear dispersion relation:

εk ≈ (|k| − kF)υF.

In the Tomonaga model, linear dispersion is assumed to
be valid in a limited energy window; however, in the Luttinger
model linear dispersion is assumed to be valid for all real
values of k and the fermions with opposite k vectors are
assumed as two different species.

Now, it is possible to rewrite the electron creation and
annihilation operators as a function of the creation and

4
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Figure 3. (a), (b) Particle–hole spectrum of a three-dimensional and
a one-dimensional systems, respectively. The dashed line in
(a) shows the plasmon dispersion in the three-dimensional system.
The solid line in (b) shows the plasmon dispersion in the
one-dimensional system. (c) The two low energy excitations in a
one-dimensional system.

annihilation operators of left- and right-moving electrons:

ck = ckR
(k)+ ckL
(−k)

c†
k = c†

kR
(k)+ c†
kL
(−k).

(14)

Since the left- and right-moving particles are considered as
different, it is possible to assign new density operators for
them, ρR(q) and ρL(q):

ρR(q) =
∑
k>0

c†
kRck+qR

ρL(q) =
∑
k<0

c†
kLck+qL.

(15)

By calculating commutation relations between left- and right-
moving density operators we can prove that they behave like
bosons:

[ρR(q), ρR(−q ′)] = δqq ′
qζ

2π

[ρL(q), ρL(−q ′)] = −δqq ′
qζ

2π

[ρR(q), ρL(−q ′)] = 0.

(16)

In terms of these density operators, H0 becomes

H0 = 2πυF

L

∑
q>0

[ρR(−q)ρR(q)

+ ρL(q)ρL(−q)] + C(NR, NL) (17)

where C(NR, NL) is constant and depends on the number of
particles.

As indicated in figure 3, there are two possible scattering
geometries1. The first one, forward scattering, occurs when

1 Actually there is a third one called the umklapp process which is important
only when the band is close to half full.

E

L R

KKF-KF

Figure 4. The linear dispersion relation of the one-dimensional
electron system. The letters L and R indicate branches of left- and
right-moving electrons, respectively.

both particles are on the same side of the Fermi surface (q ≈
0). The other one, backscattering, defines the scattering of
particles located on the opposite sides of the Fermi surface
q ≈ 2kF. By using the density operators given above, it is
possible to write down

Hint = 1

L

∑
q �=0

V1(q) ·
[
ρR(q)ρR(−q)+ ρL(q)ρL(−q)

]

+ 1

L

∑
q �=0

V2(q) ·
[
ρR(−q)ρL(q)+ ρL(−q)ρR(q)

]
. (18)

Based on these operators it is possible to define the following
boson operators:

bq =
√

2π

|q| L
(
(q)ρR(q)+
(−q)ρL(q))

b†
q =

√
2π

|q| L
(
(q)ρ†

R(q)+
(−q)ρ†
L(q)).

(19)

So the total Hamiltonian can be defined in terms of these
bosonic operators

H = H0 + Hint

H = υF

∑
q �=0

|q| b†
qbq + 1

2π

∑
q �=0

|q| V1(q)b
†
qbq

+ 1

4π

∑
q �=0

|q| V2(q)(b
†
qb†

−q + b−qbq).

(20)

Diagonalizing the Hamiltonian gives the eigenvalues of these
bosonic excitations

H |q〉 = Eq |q〉 = q

√∣∣∣∣υF + V1(q)

2π

∣∣∣∣
2

−
∣∣∣∣
V2(q)

2π

∣∣∣∣
2

. (21)

Up to this point the existence of spin was neglected, and
it is found that one-dimensional interacting charged particles
create bosonic charge density waves. Addition of the spin

5
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degree of freedom in the derivations above shows that the
spin and charge parts of the Hamiltonian are independent.
Commutation relations for the new charge and spin operators
follow bosonic rules. Starting from equation (18) we can derive
the Hamiltonian:

Hint = 1

L

∑
q �=0

V1(q) ·
[
ρR(q)+ ρL(q)][ρR(−q)+ ρL(−q)

]

+ 1

L

∑
q �=0,σ

(V2(q)− V1(q)) · [ρR,σ (−q)ρL ,σ (q)

+ ρL ,σ (−q)ρR,σ (q)]. (22)

The second part of the summation with the interaction
term, V2(q) − V1(q), deals with the backscattering, and it is
possible only if the spin of the particles are parallel. Scattering
of particles with unparallel spin leads to spin flipping, and spin
flipping cannot be expressed in bosonic form.

The total Hamiltonian is exactly the same as equation (20)
except now each boson operator has spin indices:

H = υF

∑
q �=0
σ

|q|b†
q,σbq,σ + 1

2π

∑
q �=0
σσ ′

|q|V1(q)b
†
q,σbq,σ ′

+ 1

4π

∑
q �=0
σ

|q|V2(q)(b
†
q,σb†

−q,σ + b−q,σbq,σ ). (23)

In order to uncouple the spin-up and-down operators, spin-
symmetric and spin-antisymmetric operators are defined as

bC
q = 1√

2
(bq,↑ + bq,↑) and

bS
q = 1√

2
(bq,↑ − bq,↑).

(24)

These new operators allows the division of the total
Hamiltonian into two pieces

H = HC + HS

HC =
∑
q �=0

(
υF + V1(q)

π

)
|q|bC+

q bC
q

+ V1(q)+ V2(q)

4π
|q|(bC+

q bC+
−q + bC

−qbC
q )

HS =
∑
q �=0

υF|q|bS+
q bS

q + V2(q)+ V1(q)

4π
|q|

× (bS+
q bS+

−q + bS
−qbS

q ).

(25)

Using Bogoliubov transformation it is possible to diagonalize
the Hamiltonian. Each piece of the Hamiltonian defines two
independent excitations, i.e. spin (HS) and charge (HC).

The eigenvalues of these two independent excitations are
given by

υC
q =

√(
υF + V1(q)

π

)2

−
(

V1(q)+ V2(q)

2π

)2

υ S
q =

√
υ2

F −
(

V1(q)+ V2(q)

2π

)2

.

Even though we reach the point where we can calculate the
eigenvalues of the individual excitations of one-dimensional

Figure 5. The density of states of one-dimensional interacting
particles. The density of states goes to zero following a power law,
indicating that there is no state showing single-particle excitation
properties at the Fermi level.

interacting particles, we still need to develop a formalism
which we can correlate with the real experimental result. In
order to learn the electronic properties of systems, various
spectroscopic methods are used. In the examples that
we will discuss in the following sections, mainly scanning
tunneling spectroscopy (STS) and photoemission spectroscopy
are employed. Both of these techniques are used to measure
the density of states. This brings us to the point at which we
can speculate on the density of states of the one-dimensional
interacting systems.

A(υ,w) is called the spectral function and it can be
considered as the projection of the spectral density at energy
w on to the state υ:

A(υ,w) = −2 Im GR(υ,w)

where GR(υ,w) is the retarded Green’s function which
defines, in the frequency domain, the propagation of a particle
in state υ.

The density of states can be formulated as

D(ω) =
∑
υ

A(υ,w) ∝ |ε| 1
2 ·[K+K −1]−1

.

Here K is a function of interaction of the coupling constants of
two scattering events. Generally speaking if K < 1 then the
interaction between particles is repulsive leading to the charge
density waves. If K > 1 then the interaction between the
particles becomes attractive, which leads to superconducting
fluctuations.

In STM tunneling current can be defined as

I (V ) =
∫ ∞

−∞
dω

2π

∑
υ,μ

|Tυμ|2 A1(υ, ω)A2(μ, ω + eV )

× ( f (ω + eV )− f (ω)).

It is easy to follow the equation for current given above.
The transmission term, Tυμ, takes the quality of coupling,
summation over spectral functions, A1, A2, defines the density
of states of the Luttinger liquid and metal scanning tunneling
microscope tip and the availability of the states is given by
the difference in the occupation functions. The density of
states of a metal around the Fermi level can be assumed
as constant. The tunneling transmission matrix can be also

6
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assumed constant at low biases. These two approximations
lead to the simplification in the tunneling current formalism
defined above:

I (V ) ∝
∫ ∞

−∞
dω

2π

∑
υ

A1(υ, ω)( f (ω + eV )− f (ω)).

So the derivative of the tunneling current, which is proportional
to the density of states is given as

dI (V )

dV
∝

∫ ∞

−∞
dω

2π
( f (ω + eV )− f (ω))

∑
υ

A1(υ, ω)

dI (V )

dV
∝

∑
υ

A1(υ,−eV ).

Based on the discussions above, the STS was successfully
used to determine the Luttinger liquid behavior of carbon
nanotubes [29].

Peierls instability

In his book ‘Quantum theory of solids’ Peierls explains the
effect of a periodic distortion on the physical properties of
linear chains [30]. The idea is based on the fact that any
periodic lattice distortion redefines the size of the unit cell. In
other words, if the periodic lattice distortions repeat themselves
every nth atom, then the size of the unit cell in reciprocal
space shrinks to 1

n th of the original one. This reduction in
the size of the unit cell leads to the splitting of each band in
the original unit cell into n new bands. The maximum gain
in energy is obtained if n = 2. In this case, including spin,
each atom has only one electron, namely the one-dimensional
band is half filled. In an ideal one-dimensional system, the
Peierls transition occurs at T = 0 K, whereas, in reality, one-
dimensional systems couple with the substrate and/or with each
other. Such a system loses its ideal one-dimensionality and
undergoes a Peierls instability at a temperature above 0 K.
This phenomenon, as discussed in the following sections, has
significant influence on the electronic properties of the atomic
chains at low temperatures.

3. Recent studies of various atomic chains formed on
surfaces

Due to the vast number of studies related to atomic chains, only
selected, but subjectively remarkable, studies are presented
in the following sections. These studies can be divided into
two main groups based on the way the atomic chains are
manufactured. The first group focuses on artificially formed
atomic chains. These chains are formed with the help of the
scanning tunneling microscope. Due to their limited size and
coverage, the experimental studies of these atomic chains are
restricted to scanning probe techniques. The second group
focuses on self-assembled atomic chains. The length of these
chains, depending on the substrate and the atoms forming the
chain, can reach hundreds of nanometers. The relatively large
scale of the atomic chains increases the number of applicable
techniques, ranging from scanning probe to photoemission
based techniques.

3.1. Artificially formed atomic chains

STM does not only provide images with sub-nanometer
resolution, it can also be employed as a manufacturing tool
in the nano-world. Artificial, human-made structures on the
surfaces are rather convenient substrates for measuring the
quite unusual physical and chemical properties of these low-
dimensional systems. The main purpose of these experiments
was to study the effect of coupling between individual atoms
and between the atoms of the chain and the substrate on the
electronic properties of the individual atoms.

3.2. Au atomic chains on NiAl(110)

The pioneering work on the physical properties of artificial
atomic chains was the study of Au atomic chains formed on the
NiAl(110) surface [31]. In this work the resistance between the
STM tip and the sample was lowered so that a small attractive
force between the individual atoms on the surface and the tip
apex was formed. Using this small force, the atoms were pulled
to predetermined adsorption sites (in this case on top of Ni
atoms) and used to assemble atomic chains of various lengths.

STS measurements performed on a single Au atom show a
distinctive peak located at 1.95 V. Placing another Au atom on
the neighboring site leads to the formation of a dimer. As in the
formation of the hydrogen molecule, the peak assigned to the
Au adatom splits into two and forms peaks located at 1.5 and
2.25 V. Further increase in the number of atoms in the atomic
chain pushes the lowest state towards the Fermi level. For a
Au chain of 20 atoms, the state with lowest energy is located at
0.75 V. (See figure 7(c).)

Figure 6(a) shows the dI/dV measurements taken on top
of a chain containing 20 Au atoms. Due to the finite peak
width and the dominant lowest energy state, it is not possible to
resolve the position of each state in the spectrum. The dI/dV
mappings of the atomic chains measured at various sample
biases show density fluctuations resembling the eigenstates of
a one-dimensional quantum well (see figure 6(c)). However,
due to the finite peak width, these measured dI/dV maps
are not the eigenstates but they are the superposition of a
few eigenstates with adjacent eigenvalues. The weight of
each eigenstate is determined by the coefficients, and the
coefficients are extracted from the fitting of the dI/dV pattern
to the squared wavefunctions. The maximum value of each
coefficient determines the position of the corresponding state
(see figure 7(a)). From the fitting of the position of these
states with the theoretical dispersion relation, E(k) = E0 +
h̄2k2

2me
, the onset energy, E0, and the effective mass, me, of

the electron is found—0.68 eV and 0.5 m0, respectively
(m0 is the free electron mass). As predicted, the energy
dependence of the conductivity for a Au20 chain (dashed
line) matches the calculated DOS of a one-dimensional free
electron gas (dotted line) and a 60 Å long quantum well (solid
line). This result supports the claim for the existence of one-
dimensional electron system and the sufficiency of a one-
dimensional quantum well as a physical model for this system
(see figure 7(d)).

Another prediction of the one-dimensional quantum well
model is that the position of the ground state is inversely

7
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Figure 6. (a) Conductivity (dI/dV ) spectra measured along Au20. The sample bias is 2.5 V and the tunneling current is 1 nA. (b) The
positions where the spectra were measured are marked in the topographic image of Au20. (c) Vertical cuts through dI/dV spectra shown in
(a) at three exemplary energies. Conductivity patterns are fitted with the sum of squared sinusoids of fixed wavevector πn

L and adjustable
weight cn (dotted curves). The coefficients extracted from the fitting are c1 = 0.31, c2 = 0.29, c3 = 0.26, c4 = 0.11, for 0.78 V; c5 = 0.26,
c6 = 0.5, c7 = 0.24, for 1.51; and c6 = 0.13, c7 = 0.29, c8 = 0.39, c9 = 0.19 for 2.01. Reproduced with permission from [31]. Copyright
2002 from AAAS.

proportional to the square of the width of the well. The
experiments performed on Au chains of various widths show
that the position of the lowest state is inversely proportional to
the length of the chain, indicating that the initial claim to model
the system as a one-dimensional quantum well is correct.

Apparently, there must be a reason why the one-
dimensional quantum well is sufficient to describe the
electronic properties of the atomic chain. Density functional
theory (DFT) calculations on the Au atomic chains show that
the origin of the states comes from the 6s and 6p states. In an
isolated Au atom, these states are located at −1.2 and 3.9 V.
However, due to the interaction with the substrate the 6s state
splits into two and intermixes with the down-shifted 6p orbital.
The unoccupied state is located at 1.75 eV. Due to the Stark
effect induced by the STM tip, this state shifts to 1.91 eV,
which is close to the observed value of 1.95 eV. The formation
of dimers leads to the splitting of this state. For free dimers, the
amount of splitting is inversely proportional to the separation
of the Au atoms. In order to study the effect of the substrate
on the width of the splitting, researchers have performed STS
experiments on various dimer configurations with different
separations and they have compared these experimental results
with the calculations of free and NiAl-supported Au dimers.
The experimental results indicate that the splitting in the states
of dimer I is small compared to the calculated splitting in
the states of a free dimer I. This result shows that NiAl(110)
substrate screens the direct orbital interaction and reduces the

width of the splitting. On the other hand, the splitting in the
state of dimer IV is large than the calculated splitting in the
state of a free dimer IV, indicating that the NiAl(110) surface
initiates a coupling between two Au atoms. Based on these
experimental results we can safely conclude that the states of
individual Au atoms couple through the NiAl(110) substrate
and depending on the distance between individual Au atoms,
the substrate may decrease or increase the coupling between
these atoms [32].

3.3. Pd atomic chains on NiAl(110)

Experiments similar to those presented in section 3.2 were
performed with Pd atoms in order to study the effect of
chemical composition of the atoms on the electronic properties
of the chains [33]. STS measurements show that the individual
Pd atom positioned on the NiAl(110) substrate creates a peak
located at 2.8 V in the tunneling spectra. Dimerization leads
to the splitting of this peak into two peaks located at 2.05 and
2.55 V. The peak located at 2.05 V moves towards the Fermi
level when the length of the atomic chain increases. Similar
to Au chains, the position of the lowest state is inversely
proportional to the square of the length of the atomic chains,
suggesting the possibility of using a one-dimensional quantum
well model (see figure 10(c)). dI/dV maps measured along
the atomic chain of 20 Pd atoms show density fluctuations
similar to the ones measured on Au chains (see figure 9).

8
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Figure 7. (a) Selected coefficients cn obtained from the fitting procedure of conductivity patterns along a Au20 chain. The maximum for each
cn identifies the energy of the eigenstate with wavevector k = πn/L . (b) Dispersion relation of electronic states for a Au20 chain, with each
point (E, k) obtained from (a). (c) Lowest energy conductivity peaks and end modes for Au chains with an increasing number of atoms. The
lowest energy peaks for Au3–Au20 are fitted with an L2 dependence on chain length L (solid lines). (d) Energy dependence of the conductivity
for a Au20 chain (dashed line) in comparison to the calculated DOS for a 60 Å long quantum well (solid line) and a one-dimensional free
electron gas (dotted line). Quantum well states are marked with bars along the left axis. Reproduced with permission from [31]. Copyright
2002 from AAAS.

The ground state of the atomic chain of 20 Pd is at 1.51,
which is significantly higher than the ground state of the
Au chain of the same length. The fitting of squares of the
sinusoidal wavefunctions of the one-dimensional quantum well
allows determination of the location of individual states in the
spectrum (see figures 10(a) and (d)). From the fitting, the onset
energy, E0, of 1.5 eV and effective mass, me, of 0.65 · m0 was
extracted (see figure 10(b)). The onset energy and the effective
mass values are significantly different from the ones measured
for the Au chain. The difference in the onset energy is
attributed to the lower coupling between individual Pd adatoms
and the coupling of these atoms with the NiAl(110) surface.
Intuitively, the decrease in the coupling between Pd atoms
is attributed to the relatively smaller 5sp orbital of Pd atoms
compared to the 6sp orbital of Au atoms. This relatively small
coupling of Pd atoms also explains the higher effective electron
mass measured on Pd atomic chains. In bulk, the larger

confinement of Pd orbitals leads to a smaller lattice constant
(2.75 Å) compared to the lattice constant of Au (2.89 Å).
The difference in lattice constants due to confinement of Pd
orbitals may seem quite small, but it is still significantly large
considering the fact that the coupling between the individual
atoms is due to the exponentially decaying electronic states of
atoms. Another remarkable difference between Pd and Au is
the difference in the filling of the d orbital. However, because
of the more localized nature of the d orbitals, these orbitals are
less effective in the binding, and therefore they do not have any
apparent role.

3.4. Impurity atoms on atomic chains

It is worth noting here the studies of the effect of the impurity
atoms in the electronic properties of the atomic chains. Pd
impurities in Au chains and Co impurities in Cu chains are
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Figure 8. (a)–(e) Topographic images (size 25 Å × 25 Å. Sample bias is 2 V. The tunneling current is 0.1 nA), structure models, and dI/dV
spectra for a Au atom and different Au dimers on NiAl(110). While measuring dI/dV spectra the sample bias was set at 2 V. The tunneling
current was 0.1 nA. Reproduced with permission from [32]. Copyright 2003 by the American Physical Society.

two key examples showing rather different effects on the host
atomic chains.

As in connection with the previous sections, it is better to
start with the Pd atoms in the Au chains. Both an individual
Pd atom and a dimer of Pd atoms were used as impurities in
Au chains [34]. As previously mentioned, Au and Pd chains
were studied on top of Ni atoms on a NiAl(110) surface.
STS measurements performed on individual Au and Pd atoms
show the characteristic peaks located at 2 eV and 2.90 eV,
respectively. A dimer formed from Au and Pd atoms show two
peaks at 1.7 and 2.75 eV; both of them are shifted down from
the peaks of individual Au (2 eV) and Pd (2.90 eV) atoms.
Further addition of Au atoms shifts the lower peak downward.
However, when two Au atoms were placed on each side of the
Pd atom, a peak suddenly emerges at 2.15 V and the position
of this peak does not shift upon the addition of extra Au atoms
to the chain. Similarly, in Au chains with a Pd dimer as an

impurity, localized impurity states emerge abruptly at 2.25 and
2.95 eV when the chain has Au2Pd2Au, and the further addition
of Au atoms does not change the energy level of these states.
dI/dV maps measured on Au5PdAu4 chains show that Pd atom
acts like a barrier and separates two Au chains (see figure 12).
Each chain can be modeled as an independent one-dimensional
quantum well.

A similar study was performed on the atomic chains of
Cu decorated with Co impurities [35]. A constant current
image measured with STM contains information about both
topography and chemical composition. The constant current
images of the Co adatom and the Co atoms attached to the
Cu chain appear higher than the Cu atoms on the Cu(111)
surface, which allows one to distinguish the Cu and the Co
atoms on the surface. Using the STM tip as a manipulator,
atomic chains of various Co–Cu combinations were built.
The effect of Co impurities on the electronic structure of the
Cu atomic chains was studied with STS measurements (see
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figure 13). One major effect of the existing Co impurities is
the downshift of the energy of the quantum states of the atomic
chain. Figure 13(g) shows the trend in the shift of the ground
state and the first excited state of the Co–Cu atomic chains with
respect to the atomic chain of pure Cu. The results indicate that
if Co atoms are at the center of the atomic chain, then the shift
in the energy of the ground state is larger, whereas if Co atoms
are at the edges of the atomic chain then the shift in the energy
of the first excited state becomes larger. In order to extract
binding energy and the coupling between nearest neighbor
atoms, a calculation based on the tight binding approximation
was carried out. The binding energy of Cu and the coupling
between Cu atoms were set at α = 3.31 eV and γ = −0.95 eV,
respectively [8]. The results of these calculations show that the
binding energy of the Co atom is lower than the binding energy
of the Cu atom (αCo = 2.96 ± 0.01 eV). On the other hand, the
coupling between Co–Cu is the same within the uncertainty of
the calculation (γCo = −0.94 ± 0.05 eV).

Figures 14(a) and (b) show the topography of Cu3CoCu4

and Cu8 chains. The Co impurity, as mentioned above, appears
higher than the neighboring Cu atoms (see figure 14(c)).
Unlike the Pd impurities embedded in the Au chains, the Co
atoms do not act like an impenetrable quantum wall and divide

the Cu chain into two independent quantum wells; instead
Co impurities cause asymmetries in the local density of states
(LDOS) measured on the atomic chains. As an example,
dI/dV curves measured on Cu3CoCu4, showing the ground
state, the first and the second excited states, are presented in
figures 14(d)–(g). LDOS curves are calculated using a method
based on tight binding (see figure 14(h)). Comparison of
figures 14(g) and (h) shows that the model suggested by the
authors qualitatively reproduces the experimental results.

4. Self-assembled atomic chains

This section is devoted to the presentation of some examples
of self-assembled atomic chains on various surfaces. The
main advantage of self-assembly is the possibility of creating
atomic chains that are literally defect free and hundreds
of nanometers long. Up to now, tens of publications, if
not hundreds, have reported the formation of self-assembled
atomic chains of various elements on various surfaces
(mostly on semiconductors). Among these atomic chains
are Pt/Ge(001) [12], Au/Ge(001) [13], Au/Si(111) [36],
In/Si(111) [37], Bi/Si(001) [15], and rare-earth nanowires on
Si(001) [38].
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Figure 10. (a) Coefficients cn from fitting dI/dV oscillations in a Pd20 chain to a one-dimensional ‘particle-in-a-box’ model. Each maximum
in cn defines the position of a quantum well state in the chain. (b) Energy position of quantum well states as a function of squared wavenumber
for Pd20 on NiAl(110). The slope of the linear fit to the data yields the effective electron mass of states in the quantum well. (c) Position of the
lowest energy dI/dV peak in Pd chains with increasing number of atoms. Data points were fitted with an L−2 dependence on the chain length
L . (d) Width (�), maximum dI/dV intensity (•), and peak area in arbitrary units (
�) of quantum well states in a Pd20 chain, derived from the
bias-dependent coefficients cn shown in (a). The dashed line is an exponential fit, illustrating the decrease of the dI/dV peak area for states
with higher quantum number n. Reprinted with permission from [33]. Copyright 2005 American Chemical Society.

In this review, we focus on atomic chains of Au and
Pt. These atomic chains, being metallic and extremely stable
in a wide temperature range, are promising candidates for
technological applications. Before going into the details of
recent studies of these atomic chains it is worth mentioning in
a few words why Au and Pt, 5d transition metals, form atomic
chains. In the literature it is well known that the reconstructions
observed in the low indexed surfaces of these 5d fcc metals,
e.g. Au, Pt, and Ir, are significantly different from the low
indexed surfaces of the isoelectronic 4d transition metals [39].
The difference in the structure of these surfaces is attributed
to the change in the bonding strength. In the transition metals
with a nearly full d band, the bonding between atoms comes
from the hybridization of the d and s electrons in the solid.
Due to the relativistic effect in the 5d metals, the energy of
the s band is lowered and therefore s bands lie closer to the
d bands which enhances the strength of the hybridization of
s and d bands [40]. This hybridization is weak in the non-
relativistic 4d transition metals compared to the relativistic
5d transition metals. Another important factor that plays a
role in the bonding strength is the extended geometry of 5d
orbitals due to the better screening and slightly larger ion
core. The stiffer bulk moduli and larger cohesive energy of the
bulk 5d metals provide additional evidence for the existence
of a stronger bond [41]. This stronger bonding can be the

reason of the formation of these atomic chains. This idea is
experimentally supported by the formation of Au chains on the
Ge(001) surface. On the other hand, Ag atoms, having similar
properties to Au (such as both of them being immiscible in
Ge), do not form atomic chains [42]. Similarly, Pd, being a 4d
transition metal, does not form atomic chains on Ge: instead
Pd atoms form 3D alloy clusters [43]. This experimental
evidence supports the idea that the increased binding strength
of 5d transition metals causes the formation of these chains. In
addition to this, it is not possible to rule out the fact that the
majority of these self-assembled atomic chains are found on
semiconductor surfaces which already have a tendency to form
one-dimensional structures [44].

4.1. Topographical properties of Au and Pt atomic chains on a
Ge(001) surface

In this section the topographical features of Au and Pt atomic
chains formed on a Ge(001) surface are discussed. Si(001) and
Ge(001) have basically the same crystal structure with very
similar electronic properties. However, the extensive studies
of the Au on Si(001) system do not indicate the formation of
atomic chains; instead the Au on Si(001) system, depending
on the growth and annealing temperatures, shows a number of
different reconstructions. The differences between Au induced
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Figure 11. Evolution of localized resonances at impurities. (a) STS
of a Au chain with a single Pd impurity acquired at each step of
construction from isolated Pd atom to Au5PdAu4. Each spectrum
was acquired with the tip directly above the Pd atom. (b) STS of a
Au chain with a Pd dimer impurity acquired at each step of
construction from isolated Pd2 dimer to Au4Pd2Au3. Each spectrum
was acquired with the tip directly above the center of the Pd2 dimer.
The tip–sample distance was set with Vsample between 2.85 and
3.00 V and Itunnel = 1.00 nA. Reprinted with permission from [34].
Copyright 2005, American Institute of Physics.

reconstructions of Ge and Si crystals are attributed to the
reconstruction of Si(001) surface in response to the strain
induced by foreign atoms [45–47].

A typical STM image of a clean Ge(001) terrace is shown
in figure 16(a) [48]. In a terrace both the (2 × 1) and c(4 × 2)
reconstructed domains are present [44, 49, 50]. The dimer
row structure of Ge(001) surface rotates 90◦ on alternating
terraces [51]. The high-resolution STM images of (4 × 2)
and (2 × 1) reconstructed domains are shown in figures 16(b)
and (c), respectively.

Figure 17(a) shows an STM image of the Ge(001) surface,
after 0.5 ML of Au was deposited on the surface at 675 K. In
this image, Au induced atomic chains are visible together with
the clean Ge(001) surface. The length of the Au chains can
reach several hundred nanometers. Anti-phase boundaries both
parallel and perpendicular to the Au chains are indicated in this
figure. Figures 17(b) and (c) show detailed images of the Au
chains. Alternating white and gray rows make up the (4 × 2)
reconstruction. Figure 17(d) shows the height profile measured
between points A and B. The white chains are 0.13 nm higher
than the Ge(001) dimer rows, whereas the gray chains are about
0.03 nm higher than the Ge terrace. Based on the STM images
measured on Au chains a ball and stick model was proposed
(see figure 18). In this model, white chains are considered
to be formed by Au–Au dimers, whereas Au–Ge dimers form
gray chains. The height difference between white and gray
chains is attributed to the difference in the electron density
of Au and Ge atoms near the Fermi level. STM images of
these Au chains could be measured down to 0.2 V, indicating
that the Au chains are metallic and the regions covered with

Figure 12. dI/dV images of the Au5PdAu4 chain taken
at (a) 1.00 V, (b) 1.30 V, and (c) 1.60 V. Each curve in (d) is a cross
section of a dI/dV image of the Au5PdAu4 chain. The dashed line
in (a) illustrates the location of the cross sections. The cross sections
are displayed in order of increasing Vsample from bottom ∼1.00 V
to top ∼2.30 V in 0.10 V increments. The curves have been offset
to facilitate comparison. The cross sections are displayed such that
the four-atom Au segment is on the left-hand side. Reprinted with
permission from [34]. Copyright 2005, American Institute of Physics.

these chains have a smaller band gap than the clean Ge(001)
surface.

On the other hand, upon Pt deposition, the Ge(001)
surface undergoes a major transition leading to the formation
of previously unknown terraces, called α and β . These terraces
have distinctively different and rather interesting electronic
and topographic features. The β terraces host Pt nanowires,
one of the nicest examples of self-organized low-dimensional
systems.

Once a clean Ge(001) surface is obtained, an equivalent
of 0.25 ML (or higher amounts) of Pt is deposited onto the
surface at room temperature. After Pt deposition the sample is
annealed at 1050±25 K. Figure 19 shows a typical STM image
of a Pt modified Ge(001) surface. The relative coverage of β
terraces grows as the amount of Pt deposited on the surface
increases.

Except for the cases of double steps, the step down of a β
terrace is always an α terrace. However, occasionally a terrace
can have both α and β terrace structures separated by a domain
boundary (see figure 19). A recent study has shown that at
80 K, α terraces are semiconducting with a band gap of about
0.4 eV, whereas β terraces are metallic. STS measurements at
the steps separating these two terraces show the formation of
metal induced gap states [52].

Pt nanowires consist of dimerized Pt atoms. A
recent density functional theory (DFT) study on the Pt
nanowires showed that the dimerization of Pt atoms is a
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Figure 13. dI/dV spectra of Co–Cu chains comprising N = 3 ((a), (b)) and N = 5 atoms ((c)–(f)) indicated by black curves; sphere models
show the chain structure with Co (Cu) atoms in black (white) and the tip position during dI/dV detection. Systematic downward shifts of�E
in binding energy are observed for the ground state (n = 1) and the first excited state resonance (n = 2) relative to the simultaneously
measured resonances of pure CuN reference chains (gray curves). Panel (g) shows the resonance peak shifts �E observed for various Co–Cu
chains (black symbols) compared to tight-binding-calculated values (open symbols). Set point current and bias 0.1 nA, 0.1 V; tip retraction
prior to bias ramping at constant tip height 0.4 Å ((c),(d)) and 1.3 Å ((a),(b),(e),(f)); lock-in modulation amplitude and frequency 25 mV and
670 Hz. Reproduced with permission from [35]. Copyright 2007 by the American Physical Society.

Figure 14. Constant current images (37 Å × 18 Å, 0.1 nA, 0.1 V) of
a Cu8 (a) and a Cu3CoCu4 chain (b) along with the corresponding
height profiles (c). dI/dV maps (37 Å × 18 Å) of the ground state
(d) and the first (e) and second excited state (f) of the Cu3CoCu4

chain. Basic features of the corresponding LDOS profiles measured
along the chain axis (h) are qualitatively reproduced by the
tight-binding-calculated state density profiles (g). Set point current
and bias prior to dI/dV mapping at constant tip height: 0.1 nA,
0.2 V. Reproduced with permission from [35]. Copyright 2007 by the
American Physical Society.

direct consequence of the significant lattice mismatch of
the bulk Ge and Pt nearest neighbor distances (4.0 Å and
2.77 Å, respectively) and it is driven by Frenkel–Kontorova
pairing [53]. The width of the trough between Pt nanowires
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Figure 15. Energy change per atom for Au and Ag monolayers in
close-packed arrangement as a function of percentage contraction of
surface area per atom. Note that the energy gain reduces substantially
if a non-relativistic potential is used for Au. Reproduced with
permission from [40]. Copyright 1989 by the American Physical
Society.

is 1.6 nm, or higher integer multiples of 0.8 nm, i.e. 2.4 and
3.2 nm. Figure 20(a) is an STM image of a Pt nanowire
patch where all the troughs have an equal width of 1.6 nm.
On the other hand, the STM image shown in figure 20(b) is
measured on a patch where the troughs between nanowires are
1.6 and 2.4 nm. A careful comparison of the regions enclosed
by the rectangles in figure 20(b) reveals that when the width
of a trough is 1.6 nm (2.4 nm) the dimerized Pt atoms of the
nanowires are in registry (out of registry).

In order to explore the electronic structure of Pt nanowires,
STS experiments have been performed extensively on different
nanowire patches. In figure 21, two LDOS curves measured
on 1.6 nm wide troughs at 300 and 80 K are presented. The
difference between the LDOS curves is striking. The LDOS
curve measured at 80 K has a peak located just above the
Fermi level. The shape of the peak resembles the density of
states of a one-dimensional state (van Hove singularity) which
is proportional to (E − En)

−1/2, where En is the energy of this
one-dimensional state [54].

However, the shape of the peak alone is insufficient to
prove its one-dimensional character. Therefore, we have
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Figure 16. (a) A 15.25 nm × 7.65 nm STM image of a clean
Ge(001) surface. Both 2 × 1 and c(4 × 2) domains are visible. (b) A
2.25 nm × 2.25 nm STM image of a c(4 × 2) domain of a clean
Ge(001) surface. (c) A 2.25 nm × 2.25 nm STM image of a 2 × 1
domain of a clean Ge(001) surface. In all the images, the sample bias
and the tunneling current are −1.5 V and 0.42 nA, respectively. All
the images were recorded at 300 K. (Data from the PhD thesis of
N Oncel, University of Twente, The Netherlands, courtesy of N
Oncel.)

performed dI/dV mapping of this state in order to determine
the spatial location of this state on the surface.

Figure 22 shows the dI/dV mapping of this one-
dimensional state together with the topography. The state
is located in the trough between the nanowires and runs
parallel to the nanowires. In other words, the nanowires
act as quantum walls and confine the state between them.
However, we know that an inverted topography of the surface
corrugation is superimposed on the dI/dV map of a state,
which means that the nanowires, being local protrusions in
topography, should be depressions in dI/dV mapping and
similarly the troughs between the nanowires, being local
depressions in topography, should be protrusions in dI/dV
mappings [55]. The first impression of the dI/dV mapping
of the surface seems to be in line with this assumption.
However, a careful inspection reveals that on the trough there
are defects due to missing atoms. For this type of defect,
the dI/dV signal should show an enhanced protrusion if
what is measured is only an inverted topography. Moreover,
the defects on the nanowires are also not only affecting
the dI/dV signal on the nanowires but are also destroying
the local protrusions on the troughs close to these defective
regions of the nanowires. Putting all these observations
together suggests that the Pt nanowires provide a one-
dimensional confining potential, with a confined state between
them.

The simplest model to describe this behavior is a quantum
well with impenetrable walls. The eigenvalues of energy are
given by equation (1). This equation suggests a scaling law
( n2

L2 ) for the eigenvalues of energy. The validity of this scaling
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Figure 17. Large (a) and small (b) scale STM images obtained after
depositing 0.5 ML Au on Ge(001) at a rate of 0.6 ML min−1 at
675 K. (c) STM image of 0.5 ML Au deposited on Ge(001) at
0.7 ML min−1 at 575 K. (d) Line profile obtained through AB in (c).
(e) STM image of 1.5 ML Au deposited on Ge(001) at 675 K.
Sample biases were: (a) −1.5 V, (b) −0.8 V, (c) −1.5 V, and
(e) −1.5 V. Reprinted with permission from [12]. Copyright 2004 by
the American Physical Society.
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Figure 18. (a) High-resolution STM image of 1.5 ML of Au
deposited on Ge(001) at a rate of 0.6 ML min−1 at 675 K; the sample
bias was −0.7 V. (b) Ball-and-stick model for the region surrounded
by the solid parallelogram in (a). Reprinted with permission
from [12]. Copyright 2004 by the American Physical Society.

law for the confined state can be tested by comparing the
eigenvalues of troughs of different width. Figure 23 shows
the LDOS curves measured on two troughs of different width.
The LDOS curve measured on a 1.6 nm wide trough has only
one eigenvalue and it is located at approximately 0.1 eV in the
spectrum. On the other hand, the LDOS curve measured on
a 2.4 nm wide trough has two eigenvalues located at 0.04 eV
and 0.16 eV, respectively. Comparison of these three values
clearly reveals that these eigenvalues obey the scaling law
given above.

A quantum well with impenetrable walls can confine an
infinite number of states. However, experimentally only one
confined state for a 1.6 nm wide well and two confined states
for a 2.4 nm wide well have been observed. This indicates that
the walls of the quantum well formed by Pt nanowires are not
infinitely high, but finite.

The eigenvalues of a quantum well with finite walls are
classified into two groups, even and odd, which represent the

Figure 19. A 100 nm × 100 nm STM image of a Pt modified
Ge(001) surface measured at 80 K. This particular region has a wide
patch of Pt nanowires, and bare β and α terraces. The sample bias
and the tunneling current are −1 V and 0.45 nA, respectively. (Data
from the PhD thesis of N Oncel, University of Twente, The
Netherlands, courtesy of N Oncel.)

number of nodes of the corresponding eigenfunctions. The
ground state, which has no node, is an even solution:

√
γ − y2

y
= tan(y) (even solutions)

√
γ − y2

y
= − cot(y) (odd solutions)

where γ = 2·meff·V0·L2
eff

h̄2 , y = Leff

√
2·meff·E

h̄2 , and meff = λ ·
mLeff = υ · L

Assuming that the height of the wall, V0, the effective
mass of the electron, meff, and the ratio of the effective barrier
width to the topographical distance, υ, are the same for the
1.6 and 2.4 nm wide quantum wells, all three energy levels of
the confined states can be fitted very well for V0 = 0.21 eV
and υ

√
λ = 0.8. This model cannot be extended further

to determine υ and λ and extract the effective mass of an
electron and the effective width of the well independently. The
predicted value of V0 must be smaller than the n = 2 state for
the 1.6 nm trough (0.4 eV), which explains why it is possible
to measure this state.

In figure 24(a), the spatially averaged cross section of
the ground state (the black dots) is presented together with
an ideal ground state wavefunction (blue dots). On the other
hand, figure 24(b) is the dI/dV mapping of the exited state.
The shape is rather different if we compare it with the ideal
wavefunction (blue curve). This is due to the significant
contribution of the tail of the ground state wavefunction
to the dI/dV peak of the exited state. This intermixing
of the states is also visible in the LDOS curve shown in
figure 23. The intermixing is due to the broadening of
the peaks. This broadening of the peaks has two origins,
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Figure 20. (a) A 6.75 nm × 6.75 nm STM image of a patch of five
nanowires. The width of the troughs between the nanowires is
1.6 nm. (b) A 7.9 nm × 7.9 nm STM image of a patch of Pt
nanowires. In this STM image, both 1.6 and 2.4 nm wide troughs are
visible. The rectangles are drawn to guide the eye and indicate the
phase relations between neighboring nanowires. The sample bias and
the tunneling current are −1.2 V and 0.44 nA, respectively. Both
images were recorded at 80 K. (Data from the PhD thesis of N Oncel,
University of Twente, The Netherlands, courtesy of N Oncel.)

thermal and experimental. Experimental broadening is due
to the modulation voltage of 10 mV used while measuring

dI/dV curves. Assuming a negligible intrinsic peak width, the
broadening, W , is defined as

W = [(3.6kT )2 + (2.5Vmod)
2]1/2.

In this case the total broadening is about 35 meV, which
agrees well with the observed shape of the spectra. In order
to resolve the wavefunction of the exited state the contribution
of the ground state wavefunction should be subtracted. The
dotted line in figure 24(b) shows the corrected wavefunction of
the exited state.

A recent study of Pt nanowires showed that the one-
dimensional states confined in the trough between Pt nanowires
are not the only exotic phenomena that this surface offers.
Using scanning tunneling microscopy and spectroscopy, it is
shown that Pt nanowires undergo a phase transition from a
2× periodicity at room temperature to a 4× periodicity at low
temperature (see figure 25).

In a one-dimensional system, a Peierls transition above
0 K is possible only if the system loses its ideal one-
dimensional character through coupling with the substrate
and the neighboring one-dimensional systems. Figures 26(a)
and (b) show STM images measured on a patch of nanowires
and an isolated nanowire at 4.7 K, respectively. The nanowires
labeled a–c in figure 26(a) show a 4× periodicity, whereas
the nanowire lying at the edge of the patch (labeled d) and
the isolated nanowire (labeled e) shows a 2× periodicity. The
absence of a phase transition in the isolated Pt nanowires and
the location of the Pt nanowires at the edge of a patch suggest
that the weaker neighbor coupling of these Pt nanowires favors
the ideal one-dimensional character of these nanowires and
therefore lowers the transition temperature below 4.7 K [53].

4.2. Au chains on vicinal Si(111) surfaces

Au-induced reconstruction and Au chain formation has been
observed in various vicinal Si(111) surfaces [56–59]. The
vicinal Si(111) surfaces offer a few advantages as a substrate.
The most important advantage is the possibility of forming
extensively long kink-free steps. This is due to the fact that
the unit cell of the Si(111) surface is large and the creation of

(a) (b)

Figure 21. (a) LDOS curve measured at a 1.6 nm wide trough at 300 K. (b) An LDOS curve measured at a 1.6 nm wide trough at 80 K. The
solid line is the ideal one-dimensional density of state located at 0.09 eV. (Data from the PhD thesis of N Oncel, University of Twente, The
Netherlands, courtesy of N Oncel.)
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Figure 22. Topography (a) and spatial map of the differential conductivity (dI/dV ) (b) of a 8 nm × 8 nm area with several Pt nanowires
recorded at T = 77 K. The sample bias is 0.15 V and the tunnel current is 0.437 nA. The dI/dV map is recorded with a modulation voltage of
10 mV and an oscillation frequency of 797 Hz (this frequency exceeds the bandwidth of the feedback loop). In the lower image a
three-dimensional representation of the topography (orange) and dI/dV map (purple) is shown. The one-dimensional electronic state is
exclusively located in the troughs of the Pt nanowires (black arrows refer to the position of the Pt nanowires). The yellow and green circles
(ellipses) refer to defects in the Pt nanowire and underlying substrate, respectively. The confinement of the electronic state disappears near
these defects. Reproduced with permission from [54]. Copyright 2005 by the American Physical Society.

a kink on the step edge requires many extra atoms [60, 61].
Au chains formed on vicinal Si(111) surfaces lie parallel to
the step edges and reach lengths of hundreds of nanometers.
This allows one to study the properties of these atomic chains
with a wide variety of experimental techniques and makes them
feasible candidates for technological applications. Another
advantage of using vicinal Si(111) surfaces is the ability to
control the electronic structure of the surface surrounding the
atomic chains by changing the tilt direction and tilt angle of
the surface. For example, changing the tilt direction of the
Si(111) surface from [1̄1̄2] to [112̄] reduces the number of
broken bonds at the step edge from two to one. On the other
hand, by changing the tilt angle, the width of the terraces and
therefore the separation between nearest neighbor Au chains
can be adjusted.

4.2.1. Si(111)-(5 × 2)–Au. The Si(111)-(5 × 2)–Au surface
forms upon Au deposition on the flat Si(111) surface. Figure 27
shows typical STM images of this surface. The formation of
the Si(111)-(5 × 2)–Au surface requires deposition of exactly
0.4 ML of Au [62]. In figure 27(a), the surface still has some
terraces in the Si(111)-(7 × 7) structure, indicating that the
deposited Au is insufficient. On the other hand, in figure 27(b),

Figure 23. This figure shows two LDOS curves measured in 1.6 and
2.4 nm troughs. The positions of the eigenvalues are indicated with
arrows and n is the quantum number of the indicated state. (Data
from the PhD thesis of N Oncel, University of Twente, The
Netherlands, courtesy of N Oncel.)

the surface has a terrace with
√

3 × √
3-Au patches indicating

that an excess amount of Au is deposited. Usually, low energy
electron diffraction is used to calibrate the deposition of exactly
0.4 ML of Au.
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Figure 24. (a) The black dotted line is the spatially averaged cross section of the differential conductivity of the ground state of a 2.4 nm wide
trough. The blue dotted line shows the expected squared wavefunction. (b) The black line is the spatially averaged cross section of the
differential conductivity of the first exited state of a 2.4 nm wide trough. The black dotted line shows a corrected distribution, in which the
contribution of the ground state is subtracted from the measured distribution. The blue dotted line shows the expected squared wavefunction.
The asymmetry between the two peaks of the confined state is attributed to the asymmetry of the trough and the nanowires forming the walls
of the well. (Data courtesy of N Oncel, University of Twente, The Netherlands.)

Figure 25. STM images (2D and 3D) of an array of Pt chains recorded at 4.7 K (a) and 293 K (b). At 4.7 K the outermost left chain (near the
edge of an array) exhibits a 2× periodicity while the dimers of the Pt chain within an array buckle alternatly up and down, leading to a 4×
periodicity. At room temperature every chain shows a 2× periodicity. The image size is 10 nm × 10 nm, bias voltage is −1.5 V and the
tunneling current is 0.5 nA (for both images). Reproduced with permission from [53]. Copyright 2008 Elsevier.

Figure 28 shows the angle-resolved photoemission spectra
measured at ∼16 K on bare Si(111) and Si(111)-(5 × 2)–Au
surfaces [63]. As expected, the spectrum of the Si(111)-7 × 7
surface has two surface states located at 0.1 eV (from adatoms)
and 0.7–0.8 eV (from rest atoms) below the Fermi level. On
the other hand, the spectrum of the Si(111)-(5×2)–Au surface
has only one peak. The absence of any dispersion with the
photon energy (22 eV � hν � 48 eV) indicates that the peak
originates from the surface. Additional proof showing that the
peak belongs to a surface state comes from the location of the
peak in the spectrum since the peak is located within the band
gap of the Si bulk projected on the (111) plane.

Figure 29(a) shows the angle-resolved photoemission
spectra measured parallel to the Au chains. The relatively high
band width (0.95 ± 0.03 eV) suggests strong coupling of the
orbitals of individual atoms forming the chain, whereas low
effective mass (m = 0.5me) at the bottom of the band indicates
high mobility. Angle-resolved photoemission measurements
performed perpendicular to the chain show smaller dispersion
at both the band minimum (0.14 ± 0.03 eV) and the band
maximum (0.03 ± 0.03 eV).

The dispersion relation of the surface state is shown in
figure 29(c.) The band does not cross the Fermi level as in
the case of highly stepped Si(111)-(5 × 1)–Au, instead the
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Figure 26. STM images of an array of Pt chains (left image) and an isolated Pt chain (right image) recorded at 4.7 K. Line scans along the Pt
chains labeled a–e are depicted below the STM images. Isolated Pt chains (chain e) located near the edge of an array (chain d) exhibit a 2×
periodicity, whereas the Pt chains within the patch (chains a–c) show a 4× periodicity. The image size is 10 nm × 10 nm, the bias voltage is
−1.5 V, and the tunneling current is 0.5 nA. Reproduced with permission from [53]. Copyright 2008 Elsevier.

Figure 27. Optimization of surfaces and coverage calibration using
STM. The Au coverage for flat Si(111)-5 × 2–Au is twice as large as
for stepped Si(557)–Au (0.4 ML versus 0.2), indicating two Au rows
versus one. (a) Si(111)-5 × 2–Au: insufficient Au coverage leads to
patches of clean 7 × 7. (b) Si(111)-5 × 2–Au: excess Au coverage
leads to patches of

√
3 × √

3–Au. The sample bias is −1 V for (a)
and (b). Reproduced with permission from [62]. Copyright 2001 by
the American Physical Society.

band is curved down and opens up a gap at the Fermi level
at the location of the zone boundary. Due to the opening of this
band gap at the zone boundary we may associate the gap with
a Peierls instability.

Before studying the existence a Peierls transition, it is
necessary to prove that the band is actually one-dimensional.
Figure 29 shows a two-dimensional map of the photoemission
spectra. At the bottom of the band (−1.3 eV) the constant
energy contour is diagonal, indicating that the band has both
k‖ and k⊥ dependence. Therefore, the bottom of the band is
two-dimensional. On the other hand, at the top of the band
(−0.24 eV) the constant energy contour is parallel to the x-
axis, showing that the band has only k‖ dependence, indicating
that the top of the band is one-dimensional. Another important
feature to extract from figure 30(c) is that this one-dimensional

Figure 28. Angle-resolved photoemission spectrum from the
Si(111)-5 × 2–Au chain structure compared to the Si(111)-(7 × 7)
substrate. The (7 × 7) adatom state at EF is replaced by a Au induced
surface state below EF. Reproduced with permission from [63].
Copyright 2000 by the American Physical Society.

band lies very close to the zone boundary (ZBn×2). Based on
these two experimental results, it was suggested that the states
lying at the top of the band are responsible for the observed
Peierls instability [64, 65].

4.2.2. Si(557)–Au. The advantage of using the stepped
Si surface is the existence of additional anisotropy at the
surface which allows formation of atomic chains along the
step edge direction. Another advantage is being able to
change the inter-chain distance by changing the tilt angle of
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(a) (b)

Figure 29. Band dispersion of the Au-induced state on Si(111)-5 × 2–Au. The panels in (a) provide raw data in the directions parallel and
perpendicular to the chains (θ‖ along [1̄10] and θ⊥ along [112̄]). The surface state (solid circles) can be approximated by a half-filled band
(dotted curve). However, it circumvents the Fermi level via doubling of the periodicity along the chain from 5 × 1 to 5 × 2 and opening a
Peierls gap at the new zone boundary ZBn×2. Reproduced with permission from [63]. Copyright 2000 by the American Physical Society.

Figure 30. Top: Constant energy contours in k space for the surface
state on Si(111)-5 × 2–Au, obtained from angular photoemission
distributions at hν = 34 eV (high intensity shown dark). The
emission at the bottom of the band in (a) spreads diagonally in both �k
directions, indicating two-dimensional behavior. The horizontal
contour at the top of the band in (c) is one-dimensional, because it
does not depend on k⊥. It coincides with the period-doubled zone
boundary ZBn×2, suggesting that it has triggered a Peierls gap.
Bottom: The one-dimensional Brillouin zone of a single chain,
compared to the surface Brillouin zone (hexagonal lines, solid
circles) and a 5 × 1 diffraction pattern (open circles). The zone
boundaries are ZBn×1 and ZBn×2 before and after doubling the period
a along the chain. The gray rectangle represents the �k range of panels
(a)–(c). Reproduced with permission from [63]. Copyright 2000 by
the American Physical Society.

the surface. Si(557)–Au is an especially important example
since it is one of the first, and one of the most controversial,
atomic chains studied so far. Below, a model of the surface

Figure 31. Si(557)–Au: insufficient Au coverage leads to
Si(111)7 × 7 stripes one unit cell wide. The sample bias is 2 V.
Reproduced with permission from [62]. Copyright 2001 by the
American Physical Society.

structure is introduced. The inter-chain spacing (19 Å) is
significantly larger than the spacing between Au atoms in a
chain (3.83 Å), therefore it is possible to consider Au chains as
one-dimensional structures. On the terrace of the Si(557)–Au
surface, besides Au chains Si adatoms form a chain structure
too (see figures 31 and 32).

Figure 33(a) shows the photoemission spectra of the Au
induced state measured along the Au chains. The peak
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Figure 32. The structural elements of Au induced chain structures on
vicinal Si(111) surfaces, demonstrated by a model of the Si(557)–Au
surface obtained from x-ray diffraction [61] and total energy
calculations [66]. The key element driving these one-dimensional
chain structures is the honeycomb chain, a strip of graphitic Si
surface atoms (red). The Au chain (yellow) is located at the center of
the terrace in substitutional sites, contrary to expectations from step
flow growth. Reproduced from [70]. Copyright 2007 Elsevier.

attributed to this state disappears in the range of −10◦ � θe �
10◦; however, the dispersion relation of the state extracted from
the photoemission data shows the metallic character of the state
(see figure 33(b)). The angle-resolved photoemission spectra
were measured as a function of the k vector perpendicular (k⊥)
to Au chains. The absence of any k⊥ dependence proved that
the Au-induced state is one-dimensional (see figure 33(c)). The
form of the photoemission spectra and the dispersion relation
of the peak did not show any indication of the formation of
a Peierls type of temperature dependent transition. The one-
dimensional nature of the state and relatively higher energy
cutoffs at the Fermi level were considered as indications of
the formation of a Luttinger liquid [13]. The theory of
one-dimensional electron systems predicts that the spectrum
of a Luttinger liquid obeys a power law [26, 27] (see also
figure 5). However, for this system, the calculated power, α, is
significantly large, suggesting unrealistically strong and long
ranged interactions. One of the reasons for the significantly
large α is considered to be due to the defects and impurities
on the Au chains. Another reason was attributed to the
large sample area (∼1 mm2) measured with photoemission
experiments. In such a large region, the surface photo-voltage
created by the reduced recombination rate at low temperature
may show variations which may eventually lead a change in
the measured spectrum around the Fermi level.

A detailed angle-resolved photoemission spectrum near
the Fermi level shows two peaks emerging from a single peak
while moving away from the Fermi level, and these two peaks
recombine near the near the Brillouin zone (see figure 33(d)).

These experimental findings led authors to assign these two
peaks as spinon and holon excitations.

However, the higher resolution photoemission experi-
ments performed on the Si(557)–Au surface showed that the
splitting of the bands attributed to spinons and holons do not
converge at the Fermi level. Figure 34(a) shows the photoemis-
sion intensities of these two states near the Fermi level around
k‖ = 0.4 Å

−1
[67]. This splitting in the bands rules out the pos-

sibility of a Luttinger liquid [68]. Energy distribution curves
(EDC) of photoemission intensity for S1 and S2 states are used
to check the spectral shape of each band near the Fermi level.
The EDC of state S1 shows a typical metallic behavior with
the Fermi level located at the middle of the leading edge of the
EDC. This result shows that state S1 does not obey the power
law behavior of a Luttinger liquid. On the other hand, state
S2 does not exhibit any clear Fermi cutoff for all k‖ values.

At the kF value (i.e. 0.41 Å
−1

), the leading edge of its EDC is
moved from the Fermi level to 0.05 eV above the Fermi level,
which could be attributed to the Luttinger liquid or defect in-
duced Coulomb shift [69]. Initial photoemission studies show
no clear Fermi cutoff at 12 K. This discrepancy suggests that
there might be a temperature dependent change in the spectral
weight around the Fermi level. In order to study this, pho-
toemission experiments were performed down to 70 K. The re-
sults showed no temperature dependence in the dispersion [67],
as noted previously [13]. At low temperatures, surface photo-
voltage effects gain importance and need to be compensated.
The results after compensating the photo-voltage effects show
that the leading edge of state S1 gradually moves to higher
binding energies at lower temperatures whereas the edge of
state S2 remains almost constant. This observation was at-
tributed to the opening of a gap of about 80 meV (based on
the assumption of a symmetric gap). This result also explains
why Segovia et al did not observe a clear Fermi cutoff at 12 K
in the previous study.

STM images of the Si(557)–Au surface show only two Si
chains and no Au chain. The bound state between Au atoms
and neighboring Si atoms were well below the Fermi level,
and therefore the states of the Au chains are not accessible
with STM. The role of Au atoms on the surface is nothing
but a catalyst to form the observed reconstruction on the
surface [70]. Because of this, the states discussed so far were
attributed to the Si atoms on the surface. One of them is
formed at the step edge (denoted by α) and the other one is an
adatom chain (denoted by β) formed on the terrace. From the
comparison of the STM images measured at 300 and 78 K, a
phase transition from 1× to 2× modulations is observed on α-
type chains. The existence of the phase transition suggests that
the metallic state (S1) originates from the chains of Si atoms
along the step edge. On the other hand, it is not possible to
assign an origin for the S2 band from these experiments. The
absence of any phase transition in the S2 band is attributed to a
critical temperature above 300 K. The Fermi level crossing of
S2 is closer to the zone center, indicating a stronger electron–
phonon coupling. This also supports the possibility of having
a phase transition above 300 K.

A new controversy emerged when a theory paper
suggested a completely different origin for the band splitting
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(a)

(b)

(c)

(d)

Figure 33. Dispersion of the Au-induced state parallel to the chains. (a) Angle-resolved photoemission spectra of Si(111)-5 × 1 Au, with the
surface wavevector, �k‖, along the chain direction [11̄0]. The polar emission angle θe is noted with respect to the surface normal. The angular
steps between spectra for which the value of θe is marked on the figure are equal. �k‖ values are given for emission at EF, with a being the
inter-Au distance within a chain, 3.83 Å. The electric vector of the radiation is contained in the emission plane (p-pol). In order to compensate
for effects due to the polarization of the exciting radiation, negative angle spectra are multiplied by a factor of of 0.75. An excitation feature is
clearly seen dispersing towards zero energy as normal emission is approached. (b) The energy and momentum positions of the main structure
plotted and plotted to a parabola showing the characteristic dispersion of a metallic band. (c) Angle-resolved photoemission spectra with
varying surface wavevector �k‖ perpendicular to the chains. The polar angle θe in the emission plane is fixed at −128 and the angle φe in the
perpendicular plane is varied. In order to remove any visual distortions coming from the featureless background in the raw spectra; this has
been subtracted. The lack of dispersion in this direction confirms the one-dimensional nature of the system under study. (d) Detailed
angle-resolved photoemission spectra of Si(111)-5 × 1 Au for θe between −68 and −188. To emphasize the structures of interest, a
featureless background has been removed as explained in the text. The double-peaked structure observed in the range θe − 13 to −15 is
assumed to originate from the excitation of spin and charge collective modes. The spinon lies closest to EF, and the holon at deeper energy.
Reproduced with permission from [13]. Copyright 1999 from Macmillan Publishers.

at the Fermi level [71]. Their explanation is based
on the existence of spin–orbit coupling. The effect of
spin–orbit splitting on Au-induced surface states has been

shown by angle-resolved photoemission experiments and
calculations [72, 73]. The temperature dependent change in
topography of the α chains is attributed to buckling of the step
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(a) (b)

(c)

(d)

Figure 34. Two highly dispersive S1 and S2 bands of Au/Si(557) at 300 K as shown (a) in the photoelectron intensity map in gray scale as a
function of binding energy (as referenced to EF) and momentum along the one-dimensional chains k‖ and (b) in the momentum distribution
curves of the photoelectron intensity. (c) Energy distribution curves (EDCs) of the photoemission intensity for bands S1 and S2 at the two kF

positions of 0.35 and 0.41 Å
−1

, respectively, and (d) temperature dependence of the center-of-the-leading-edge positions of EDCs (see the
arrows in (c)) for S1 and S2 at the corresponding kF positions. The EDC of a typical normal metal, Ta, is given for comparison in (c) and, due
to the low intensity of S1 at EF, its EDC in (c) is enlarged by a factor of 4. Reproduced with permission from [67]. Copyright 2003 by the
American Physical Society.

edge. At room temperature, the atoms forming the α chain
oscillate between up and down configurations. Therefore,
STM images only reflects the time averaged position of
these atoms. However, at low temperature the oscillations
are suppressed, which allows clear imaging of individual
atoms.

Figure 36(a) shows the equilibrium structure of a Si(557)–
Au surface. The model is similar to the models suggested
before [74]. Figure 36(b) (36(c)) show the band structure
of the surface parallel to the step edge calculated with
non-spin-polarized (spin-polarized) VASP [75, 76] using the
local density approximation. In this graph the unoccupied
(occupied) band shown with triangles are originating from the
adatoms (rest atoms). On the other hand, the atoms at the step
edge, having two dangling bonds pointing perpendicular to the
step edge, give rise to the flat band marked with open squares.
The states originating from Au–Si bonds form two bands with
rather different dispersion relations. The Au–Si(D) band is
rather flat whereas the Au–Si(C) bond is dispersive. The shape
and width of the dispersion of this last band and its spin–orbit
splitting are consistent with the angle-resolved photoemission
spectra experiments.

5. Outlook

The ability to manufacture atomic chains of various atoms
in various sizes has given us the opportunity to study the
oddities in one-dimensional physics. However, considering
the fact that these studies summarized above exemplify a

(a)

(c)

(b)

(e)(d)

Figure 35. Empty-state STM images at (a), (c) 300 and (d), (e) 78 K
with a sample bias of (a), (d) Vs = 1.0 and (c), (e) 0.7 V. The recent
structural model of Au/Si(557) [16, 17, 19] is shown schematically in
(b), where the large and small circles denote Au and Si atoms,
respectively. Reproduced with permission from [67]. Copyright 2003
by the American Physical Society.

rather small portion of the total studies, the popularity of
atomic chains among scientists cannot only be attributed
to the natural curiosity of scientists wanting to investigate
unexplored corners of the nano-world. In the near future, we
will have reached the level where we incorporate individual
atoms into devices. Therefore, studying the physics of
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Figure 36. (a) Calculated equilibrium structure of the Si(557)–Au
reconstruction. The corresponding electronic band structure is shown
for a calculation not including (b), and including (c), the spin–orbit
interaction. Energies are referred to the Fermi level. Surface states
have been marked with different symbols according to their main
atomic character (see text). Reproduced from [71]. Copyright 2004
by the American Physical Society.

these one-dimensional atomic chains has great importance for
future technological applications. On the other hand, it is
apparent that the functions of these atomic chains are not
going to be limited to interconnectors of various components
of an integrated circuit. One major opportunity, overlooked
up to now, is to employ atomic chains as templates or
bases (bottom-up approach) for manufacturing hierarchically
higher order structures [77]. In this way, the size and the
sharpness of the edges of the individual features can approach
the angstrom level, well below the limits of the top-down
approach.

Another rather important opportunity can come from
chemical properties of these atomic chains. The catalytic
properties of materials depends strongly on their size and
dimensionality, therefore highly organized one-dimensional
atomic chains can be employed as catalysts of various
important reactions.

Without a doubt, the unknowns of the physical and
chemical properties of one-dimensional atomic chains are
going to fascinate more scientists and draw them into the world
of nanowires.
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